

Etude théorique	
À défaut d'essais, calculs numériques par éléments finis avec modèles couplés LS-DYNA / USA	
Modélisation 3D de la charpente résistante du navire	
Adaptation de la finesse du maillage en tranche milieu pour modéliser correctement les mécanismes de plastification et d'enfoncement sous chocs (primaire et secondaires)	
Pour analyser l'influence du choc, étude comparative	
 Chargement bulle seule (HS) 	
 Chargement combinant choc et bulle (PHS) 	
Configurations testées x8 (même charge explosive C) en é	tudiant θ
 2 angles d'attaque θ (0° et 45°) 	
 4 distances d'action R 	
→ Exploitation des résultats en fonction du facteur de choc à la quille : $K_{SF} = \frac{\sqrt{C}}{R} \left(\frac{1 + \cos}{2} \right)$	
Direction générale de l'armement	19

