
ATMA 2021

DEVELOPPEMENT D’UNE NOUVELLE METHODE POUR
L’EVALUATION DE LA TENUE A LA MER

D’UN NAVIRE ANIME D’UNE VITESSE D’AVANCE
DANS LA HOULE

Xiaobo CHEN(1)∗ , Youngmyung CHOI(1,2), Sime MALENICA(1)

and Quentin DERBANNE(1)

(1)Research Department, Bureau Veritas, Paris, France
(2)Dept. Naval Architecture and Ocean Engineering, PNU, Busan, Republic of Korea

∗xiao-bo.chen@bureauveritas.com

SOMMAIRE

En choisissant le courant dévié par un navire (l’écoulement de double modèle) comme l’écoulement de
base sur lequel est superposé l’écoulement de perturbation contenant une composante stationnaire et
une instationnaire, une nouvelle linéarisation cohérente de l’écoulement de perturbation, en particulier,
une nouvelle condition aux limites sur la surface libre, est formulée. Un nouveau système d’équations
intégrales sur les frontières a été établi en appliquant le théorème de Green. Les équations intégrales
comprennent une intégrale localisée sur une zone de surface libre proche du corps, sans l’intégrale
le long de la ligne de flottaison qui est présente dans l’approche classique avec la linéarisation sur
l’écoulement uniforme. Pour mieux représenter la physique, la fonction de Green est reformulée
en tenant compte de la viscosité du fluide de sorte que les comportements singuliers et hautement
oscillatoires disparaissent naturellement. L’intégration de la fonction Green sur les facettes planes est
effectuée de manière précise en utilisant les nouvelles formulations analytiques. En plus d’imposer
la nullité du potentiel sur la surface de flottaison à l’intérieur de la carène, une nouvelle base de
solution du problème est ainsi établie. Des résultats numériques en très bon accord avec des mesures
expérimentales montrent que la présente méthode fournit bien un outil fiable et pratique pour étudier
les efforts sur un navire animé d’une vitesse d’avance dans la houle ainsi que les réponses du navire.

SUMMARY

By choosing the ship-shaped stream (double-body flow) as the base flow over which is superposed the
perturbation flow containing steady and unsteady components, a consistent linearisation of perturba-
tion flows, in particular, a new boundary condition on the free surface, is formulated. A new set of
boundary integral equations (BIE) are established by applying the Green’s theorem. The resultant
BIE includes a localized free-surface integral in the vicinity of ship but without the troublesome water-
line integral present in the classical Neumann-Kelvin approach (NK). The Green function associated
with a pulsating and translating source is reformulated by considering the viscous effect so that the
complex singular and highly-oscillatory behaviour disappear naturally. The integration of Green’s
function over flat panels is evaluated accurately by applying new analytical formulations. With extra
integral equations imposed over the waterplane inside the ship hull to ensure the zero potential outside
the fluid domain, a new sound base of solution for ship seakeeping with forward speed is thus estab-
lished. Numerical results in good agreement with experimental measurements shows that this new
method provides a reliable and practical method to evaluate wave loads and induced ship motions.

1. INTRODUCTION

Being critically important in the design of ships,
many studies have been carried out in the past
for studying ship seakeeping with forward speed.
No need to mention the tremendous progress

in applying CFD to ship seakeeping, we like to
focus on the potential theory following the as-
sumption of ideal fluid and irrotational flow, for
the simple reason that a reliable and practical
tool is needed in the daily activities of ship de-
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sign to reply to many technical challenges timely.

Within the framework of potential theory,
the governing equation in the fluid is in its sim-
plest form - the Laplacian which guarantees the
conservation of mass. Nevertheless, the bound-
ary conditions are extremely complicated. In
particular, that on the free surface contains qua-
dratic and cubic products of the velocity poten-
tial combining both the kinematic requirement
to ensure that a fluid particle on the free sur-
face stays always on the surface, and the dy-
namic balance of pressures on the upper and
lower sides including the difference equal to that
due to surface tension if any. Furthermore, the
complicated boundary condition is written on
the surface whose position depends on the so-
lution. To break this ”uroboros” ring, the per-
turbation method is used. Indeed, the total flow
can be written as the sum of a base one and
perturbed one by assuming that the perturba-
tion flow has an order of magnitude smaller than
that of the base flow. By taking only all terms
of leading order, a linearisation of the problem
is then realized.

In the classical treatment of ship seakeep-
ing problem, the uniform stream is chosen as
the base flow over which the linearisation is re-
ferred to that of Neumann-Kelvin type. There
have been two mainstream methods including
one based on the use of free-surface Green’s func-
tion (GFM) and another the Rankine source me-
thod (RSM). Being more advantageous than RSM,
the classical GFM reduces the unknowns to those
on the hull only since the Green’s function sat-
isfies the boundary condition on the free surface
and the radiation condition which cause sub-
stantial difficulties in RSM. Furthermore, wavy
properties (dispersive propagating waves) of po-
tential flows are well represented by the Fourier
elements in GFM while the Rankine source is
fundamentally representative for local and non-
wavy flows. One of the fair examples concerns
the zero-speed case. The great success of GFM
in practical applications shows that GFM is in-
comparably superior to RSM. Thus, many stud-
ies have been pursued in order to extend the suc-
cess to the seakeeping with forward speed.

A non-exhaustive list of publications in the
past Journées de l’Hydrodynamique includes the
analysis on slender-ship approximations in [1]
and [2] on the first two events, the studious work
on the pulsating and translating Green’s func-
tion in [3], [6] and [7], the theoretical develop-
ments in [5] and [11], the validations presented

in [4], [8] and [9], the method based on the use
of bi-quadratic patches in [10], and the devel-
opment of multi-domain method (MDM) in [12]
based on the subdivision of fluid domain by a
control surface at a distance from the ship, and
the use of GFM in the exterior domain from the
control surface, and RSM in the interior domain
between the ship hull and the control surface.
This MDM has been extensively studied in [13].
However, the success has been limited since the
critical elementary solutions like added-mass and
damping coefficients are in good agreement with
benchmark results only for very thin or slender
ships. Results for a realistic or blunt ship were
not convergent nor stable. The major difficulty
has been identified as the accurate computation
of Green’s function, its derivatives and their in-
tegration on ship hull and, in particular, along
the waterline, as well summarized in [14].

The analysis in [15] reveals the peculiar prop-
erties that Green’s function is singular and highly
oscillatory when a field point approaches to the
track of the translating and pulsating source. In-
troduction of viscosity (and surface tension) pre-
sented in [16] is an activator to suppress trou-
blesome short waves. Still the waterline is there.
Numerical tests in [13] indicate well the linear
system associated with the boundary integral
equations is ill-conditioned due to the waterline
integral. This waterline integral is derived in [17]
for the first time by applying the Stokes’ theorem
to the integral representation on the free surface,
wrongly omitted in many studies before.

To establish a sound theoretical base and de-
velop a reliable numerical scheme, now it is es-
sential to make a thorough analysis of the prob-
lem from a new point of view with different an-
gles. Some important results of this analysis are
presented here. For the sake of space, only a
summary of main points is given in each section.
First, a consistent linearisation of unsteady flow
over the ship-shaped stream, often called double-
body flow, yield a complex boundary condition
on the free surface, presented in Section 2. The
free-surface Green’s function with the effect of
viscosity and some of interesting features are pre-
sented in section 3. The new formulations to
analytically integrate Green’s function over flat
panels are given afterwards. The boundary in-
tegral equations are summarized in Section 4
where we find our recompense that the complex
boundary condition on the free surface leads to
the disappearance of the waterline integral. The
remaining free-surface integral is very local as
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the integrand is only significant in the vicinity of
ship. In Section 5, the hydrodynamic pressures
and loads are given with some different decom-
positions. In particular, a speed-effect restoring
force associated with the steady flow is expressed
explicitly and included in the formulation of hy-
drodynamic coefficients. The numerical imple-
mentation is presented in Section 6 with numer-
ical results including added-mass and damping
coefficients, the wave exciting loads and induced
ship motions. Finally, some discussion and con-
clusions are recited in Section 7.

2. UNSTEADY FLOWS

We define a Cartesian coordinate system trans-
lating at the speed U with the ship in the posi-
tive x-direction. The z-axis is positive upwards
with the origin at the undisturbed free surface.
Relative to this reference frame, there exists an
ambient flow −U~i opposite to ship forward direc-
tion. The deepwater case is considered through-
out the paper.

2.1. General equations

The presence of ship in this ambient flow cre-
ates a ship-shaped steady flow around the hull,
called base flow W = U∇(φ̄ − x). In addi-
tion to this base flow, there should be a wavy
steady flow ∇φ. When the ship oscillates about
the reference frame or/and in incoming waves,
there exist also unsteady flow ∇ψ. The wavy
steady and unsteady flows are called perturba-
tion flow and represented by the velocity poten-
tial Φ = φ + ψ. All velocity potentials (φ̄, φ, ψ)
satisfy the Laplace equation in the fluid. The to-
tal flow W +∇Φ satisfies the kinematic and dy-
namic conditions written in the combined form

Φtt + gΦz + 2W · ∇Φt

+W · ∇(W · ∇Φ) +∇Φ · (W · ∇)W

= −2∇Φ · ∇Φt − (W +∇Φ) · (∇Φ · ∇)Φ

−∇(W · ∇Φ) · ∇Φ

−gUφ̄z −W · (W · ∇)W

(1)

on the free surface z = η which is defined by

η = −1

g

[
(∂t + W · ∇)Φ +

1

2
∇Φ · ∇Φ

+
1

2
(W ·W − U2)

] (2)

The above equations (1) for potentials Φ = φ+ψ
and (2) for wave elevations are fully nonlinear
with quadratic and cubic products of potentials
and the assumption of time independence con-

cerns only the base flow W. Direct solutions of
such problems with accuracy are extremely dif-
ficult if not impossible.

2.2. Linearisation on ship-shaped stream

We assume now the base flow W = U∇(φ̄ − x)
is of order O(1) while the perturbation flows
Φ = φ + ψ are of smaller order o(1) compar-
ing to the base flow (φ̄ − x). In this way, the
quadratic and cubic products of (φ, ψ) are ig-
nored. Furthermore, the free-surface elevation η
is also assumed to be of smaller order o(1) which
is true for small or moderate speed. The Tay-
lor expansion of all terms in (1) with respect to
z = 0 can be obtained by using

T |z=η ≈ T |z=0 + ηTz|z=0 (3)

in which T represents any term in (1) and (2).
Finally, the frequency-domain expression of un-
steady potential is written as

ψ = <e{ϕ e−iωet}L
√
gL (4)

with ωe the encounter frequency, and the base
flow W = Uw with w = ∇φ̄−~i is used to obtain
the linear boundary condition

ϕz − ω2ϕ− 2iτw · ∇ϕ
+F 2

r w · ∇(w · ∇ϕ) + F 2
r ∇ϕ · (w · ∇)w

+φ̄zz(iτϕ− F 2
r w · ∇ϕ) = 0

(5)

on F i.e. z = 0. In (5), we have used the nota-

tions ω = ωe
√
L/g for dimensionless encounter

frequency, Fr = U/
√
gL the Froude number and

τ = ωFr the Brard number with L the ship
length. Without considering the presence of ship,
the classical Neumann-Kelvin linearisation is well
based on uniform stream, i.e., taking φ̄ = 0 and
(5) becomes

ϕz − ω2ϕ+ 2iτϕx + F 2
r ϕxx = 0 (6)

which is largely used in previous studies. The
Neumann-Kelvin boundary condition (6) can be
illustrated as the uniform stream penetrating in
and through the ship hull (physically unaccept-
able) as shown by the left part of Figure 1. The
linearisation based on the ship-shaped stream
(5) is illustrated on the right part of Figure 1
which is physically acceptable.

The boundary condition on the ship hull is
written on H at its mean position

ϕn =

{
−aϕIn diffraction

−iωξjnj + Frξjmj radiations
(7)

The potential ϕI representing incoming waves is

Tous droits de reproduction réservés - ATMA 2021



Figure 1. Uniform stream (left) vs ship-shaped stream (right) as the base flow in the linearisation

known to take Airy’s form

ϕI = −ω−1
0 ek0z+ik0(x cosβ+y sinβ) (8)

with the wave frequency ω0 scaled with
√
L/g,

the wavenumber k0 = ω2
0 and wave heading β.

The six elementary motions are denoted by ξj for
j = 1, 2, · · · , 6 including the translations T =
(ξ1, ξ2, ξ3) and rotations R = (ξ4, ξ5, ξ6). The
vector components (nj ,mj) for j = 1, 2, · · · , 6
are those of the generalized normal vector and
those ofmj terms depending on ship-shaped stream
w and explicitly given in [18]. It worth noting
that the boundary condition (5) should be sat-
isfied by the sum ϕD + ϕI of diffraction poten-
tial ϕD and that of incoming waves ϕI so that
(5) becomes non-homogenous (a non-zero forcing
term) associated with ϕI for diffraction problem.

3. VISCOUS GREEN’S FUNCTION

We define the fundamental solution at the field
point P (ξ, η, ζ) associated with a translating and
pulsating source located atQ(x, y, z), i.e. Green’s
functionG(P,Q) which satisfies the special equa-
tion of Poisson type

∇2G(P,Q) = 4πδ(|P −Q|) (9)

with δ(·) the Dirac delta function, in the fluid
domain. Based on the formal analysis of the
Laplace-Fourier transform applied to the Stokes
flow, in [16], the leading effect of vorticity is rep-
resented by an additional term appearing in the
boundary condition at the free surface. Indeed,
the linear boundary condition with dissipation is
written by

Gz − ω2G− 2iτGx + F 2
r Gxx

− 4ε(FrGxzz + iωGzz) = 0
(10)

on z = 0. In (10), the coefficient ε = ν/
√
gL3

is proportional to the fluid kinematic viscosity
ν. It is shown that the magnitude of elemen-
tary waves ekζ+i(kξ−ωt) decays like e−4εωk2|ξ| and
more rapidly with short waves of large wavenum-
ber. This implies that the complex singular and
highly oscillatory behaviours in G(P,Q) due to
short waves predicted in [15] just disappear.

By applying Fourier transform to differential
equations satisfied by Green’s function, we can
express it by the sum of

4πG(P,Q) = −1/r + 1/r′ +GF (P,Q) (11)

in which r is the distance between the source
point Q(x, y, z) and the field point P (ξ, η, ζ) and
r′ is that between the mirror source Q′(x, y,−z)
and P (ξ, η, ζ). The free-surface term GF (P,Q)
is given by the Fourier integral in polar (k, θ)
coordinates

GF (P,Q) =
1

πF 2
r

∫ π

−π
dθ

∫ ∞
0

dk
kek(v−iw)

D(k, θ)
(12)

with the speed-scaled Fourier variable k and

v = (ζ + z)/F 2
r ≤ 0

w = cos θ(ξ − x)/F 2
r + sin θ(η − y)/F 2

r

(13)

in their speed-scaled form.

3.1. Dispersion wavenumbers

The denominator of the integrand function in
(12) is the dispersion function resultant from
the Fourier transform of the boundary condition
(10) in [16] :

D(k, θ)=(k cos θ−τ)2−k−i4ε(k cos θ−τ)k2 (14)

The coefficient ε in (14) is scaled now by

ε = ν/(F 3
r

√
gL3) = νg/U3 (15)

The real part of D(k, θ) given in (14) is exactly
the same as the classical dispersion function with-
out viscosity. The equation for the real part of
<{D(k, θ)} = 0 has two roots, namely, the invis-
cid wavenumbers

k− = τ2/(1/2 +
√

1/4 + τ cos θ)2

k+ = (1/2 +
√

1/4 + τ cos θ)2/ cos2 θ
(16)

to which one has to add an artificial and in-
finitesimal imaginary part (equivalent to ε →
0+) multiplying a sign function to satisfy radia-
tion condition. The complex dispersion function
(14) represents the exact viscous effect and the
required radiation condition is intrinsically sat-
isfied by Green’s function.
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As the complex dispersion function D(k, θ)
is independent of the sign of θ so that we consider
only the case θ ∈ (0, π). The cubic dispersion
equation D(k, θ) = 0 gives three complex roots
denoted by :

k1,2,3(θ) = κ1,2,3(θ) + iµ1,2,3(θ) (17)

which can be found by applying Cardano’s for-
mulae invented in 16th century.

The three complex wavenumbers (k1, k2, k3)
are illustrated on the left, in the middle and
on the right of Figure 2, respectively. The real
and imaginary parts are represented against the
value cos θ, by solid lines and dashed lines with
symbols, respectively. One value ε = 0.0001 is
chosen, three τ = 1/5, 1/4 and 1/2 are used and
the associated curves are painted in black, red
and blue colors, respectively. The first wavenum-
ber k1 scaled by F 2

r in (14) is re-scaled by divid-
ing τ2. The wavenumbers k2 and the real part
κ3 of k3 are re-scaled by multiplying cos2 θ while
the imaginary part µ3 of k3 by ε cos2 θ.

The first wavenumber k1 is of finite magni-
tude. Its real part κ1 is very close to k− and its
imaginary part µ1 > 0 and small for τ ≤ 1/4.

For τ > 1/4, µ1 ≈
√
−1/4− τ cos θ/ cos2 θ for

θ ≥ π − θc with θc = arctan
√

16τ2 − 1. The
second wavenumber k2 is very different by its
imaginary part |µ2| ∝ 4ε|κ2|5/2 while κ2 can be
very large for |θ− π/2| = θm > 0 and falls down
to zero at θ = π/2, elsewhere κ2 is close to k+

for ε� 1. The third wavenumber k3 is new and
has a negative real part κ3 < 0 and an imagi-
nary part of very large magnitude |µ3| ∝ O(1/ε).
Except for τ > 1/4 and θ > π − θc, µ2 ≈
−
√
−1/4− τ cos θ/ cos2 θ ≈ −µ1, the imaginary

part of each wavenumber at different values of τ
has closed values - the difference in function of τ
is of order O(ε), so that the curves of imaginary
part are indistinguishable .

As shown on the left part of Figure 3, the
real part κ1,2(θ) is illustrated on the Fourier (α, β)
plane by (α, β) = κ1,2(cos θ, sin θ). At large k,
the inviscid wavenumber curve k+ or κ2(ε = 0+)
approaches to a parabola. With viscosity, the
wavenumber curves bend back to the axis α = 0.
At small or moderate (α, β), the wavenumbers
(κ2 and k+) are identical for small ε. On the
right part of Figure 3, the imaginary part µ2(θ)
of the complex wavenumber k2(θ) for θ < π/2, is
depicted for ε = 10−4, 10−3, 10−2 by the height
above the Fourier (α, β) plane along the associ-
ated κ2 curves. The magnitude of µ2 increases
rapidly with the wavenumber.

Other interesting features of complex wave-
numbers are shown in Figure 4. On the left
part, the special case for τ = 1/4 for which the
classical inviscid wavenumebrs k∓ cross at the
point (α = −1/4, β = 0). Since |∇D| = 0 at
this point, GF (P,Q) is known to be singular for
τ = 1/4. With viscosity, κ1 and κ2 do not touch
each other anymore and go smoothly through
the axis β = 0 (wavenumber curves are symmet-
rical with respect to the axis β = 0). Indeed,
|∇D| = −iε5/4 and the singularity in Green’s
function disappears simply. On the right part of
Figure 4, the wavenumber curves for τ = 1/2 are
illustrated. Again the inviscid wavenumbers k∓

touch at the point (α = −τ, β = τ
√

16τ2 − 1)
at which the wavenumber vector is tangent to
the wavenumber curves. The integrand function
of Green’s function has a square root singular-
ity at this tangent point which merely induces
some numerical difficulties as Green’s function
itself is regular for any τ > 1/4. The viscos-
ity wavenumber curves go distinguishably in the
vicinity of the tangent point that benefits to nu-
merical computations.

3.2. Formulations of Havelock type

Once the three complex roots are found, the ma-
jor part of integrand function in (12) can be de-
veloped as

k

D(k, θ)
=

A1

k − k1
+

A2

k − k2
+

A3

k − k3
(18)

with the amplitude function (A1, A2, A3) inde-
pendent of space variable (P,Q) and the inte-
gral variable k are associated with (k1, k2, k3),
respectively. The wavenumber integral defined
by

K(θ) =

∫ ∞
0

ek(v−iw)

k − (κ+ iµ)
dk = Cex(Z)

+iπ [sgn(µ) + sgn(µv− κw)]H(κ) exp(Z)

(19)

is given in [19] with

Cex(Z) = eZE1(Z) , Z = (κ+iµ)(v− iw) (20)

and (v, w) defined by (13) while (κ, µ) represent-
ing the (real, imaginary) parts of either k1, k2

or k3. Furthermore, sgn(·) is the sign function
and H(·) the Heaviside function. Finally, E1(·)
is the exponential-integral function defined by
(eq.5.1.1) in [20].

Using (18) in (12) and representing the in-
ner integral by the wavenumber integral function
(19), Green’s function is expressed by the single
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Figure 2. Complex wavenumbers for τ = 1/5, 1/4 and 1/2 in function of cos θ: k1/τ
2 (left),

k2 cos2 θ (middle) and (κ3, εµ3) cos2 θ (right)
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Figure 3. Wavenumber curves k1,2(θ) at τ = 0.2: (left) real part κ1,2(θ) on the Fourier plane
(α, β) = κ(cos θ, sin θ) and (right) its imaginary part µ2(θ) by the height above (α, β) plane.

θ-integral

GF (P,Q) =
1

πF 2
r

∫ π

−π

[
A1K1(θ)

+A2K2(θ) +A3K3(θ)
]

dθ

(21)

of Havelock type. It worth noting that the am-
plitude function Aj(θ) for j = 1, 2, 3 in (21) are
of regular function which can have sharp varia-
tion at θ = ±(π − θc) with θc = arctan(16τ2 −
1) for τ > 1/4. Furthermore, the wavenum-
ber integral function K(θ) = K(P,Q) = K(a +
ib) with (a, b) being real numbers depending on
(κ, µ, v, w) according to its definition (19) is a
regular function for v < 0, except a logarithmic
singularity at v = 0 = w. Green’s function rep-
resented by the single integral (21) can be then
obtained by numerical integrations using trapeze
or Gauss-Legendre algorithms.

The effect of viscosity is studied by illustrat-
ing the free-surface term GF (P,Q) defined by
(21) in Figure 5. Its real (R.P.) and imaginary
parts (I.P.) along a straight cut at (x− ξ)/F 2

r =

−10 on the free surface v = (z + ζ)/F 2
r = 0 are

depicted by red and blue solid lines, respectively,
on the left. The pulsating and translating source
is located at the origin for τ = 0.2. The top part
represents the values without viscosity (ε = 0+)
while the bottom part depicts the values with
viscosity (ε = 0.0001). The singular and fast
oscillations in the vicinity of source track (top)
disappear with viscosity (bottom). On the right
of Figure 5, the wave pattern is depicted with
the real part and imaginary part on the up half
and lower half, respectively.

3.3. Integrations of Green’s function

In the case of the zero-speed problem, only one
wavenumber exists for one frequency, i.e., oscilla-
tions of Green’s function are associated with that
wavenumber. Accurate integrations of Green’s
function can then be obtained by using one Gauss-
point algorithm at panel’s centroid if the panel
size is enough small (one sixth) comparing to
the wavelength. With forward speed, there is
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Figure 4. Wavenumbers κ1,2(θ) on the Fourier plane (α, β) = κ(cos θ, sin θ) vs inviscid wavenumbers k∓(θ)
for τ = 1/4 (left) and τ = 1/2 (right).
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a large interval of wavenumbers from several fi-
nite values up to infinity. The introduction of
viscosity gives some upper limits of wavenum-
bers from which higher oscillations are negligi-
ble. In order to obtain accurate integrations of
Green’s function associated with a limited inter-
val of wavenumbers, the analytical integration
over flat panels is considered. The flat panel
hq of polygon with mq nodes is described by the
node coordinatesQj(xj , yj , zj) for j = 1, 2, · · · ,mq

and connectivities fromQj toQj+1 withQmq+1 =
Q1 to close the contour. The normal vector is de-
noted as nq = (nq1, n

q
2, n

q
3) according to the right-

hand-thumb rule. The field point is denoted by
P (ξ, η, ζ). The integration of the wavenumber
integral function on the panel to the field point
(P2C = panel to panel’s centroid), shown on the
left part of Figure 6, can be formulated as

Cq(P ) =

∫∫
hq

K(P,Q) dS(Q) (22)

=
1

k2

mq∑
j=1

{[
cqj+d

q
jk
]
K(ZPj ) + cqjR1(ZPj )

}
obtained in [19], inspired from the course hand-
out [21], and by applying Stokes’ theorem to
transform an integral on panel surface to con-
tour integrals along the panel’s sides. In (22),
k = κ + iµ representing k1, k2 or k3. Further-
more, the functions

K(ZPj ) = K(kZPj ) + ln(−ZPj )

R1(ZPj ) = ZPj
[

ln(−ZPj )− 1
] (23)

are used with following notations

ZPj = ZP + Zj

ZP = ζ − i(ξ cos θ + η sin θ)

Zj = zj + i(xj cos θ + yj sin θ)

(24)
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Figure 6. Integration of Green’s function: scheme of P2C (left) and that of P2P (right)

The coefficients (cqj , d
q
j) in (22) are defined by

cqj = (nq2 + inq3 sin θ)
[
(xj − xj−1)δcj−1

− (xj+1 − xj)δcj
]

− (nq1 + inq3 cos θ)
[
(yj − yj−1)δcj−1

− (yj+1 − yj)δcj
]

dqj = (nq2 + inq3 sin θ)
[
(xj − xj−1)δdj−1

+ (xj+1 − xj)δdj
]

− (nq1 + inq3 cos θ)
[
(yj − yj−1)δdj−1

+ (yj+1 − yj)δdj
]

δcj =

{
1/(Zj+1 − Zj) |Zj+1 − Zj | > 0

0 |Zj+1 − Zj | = 0

δdj =

{
0 |Zj+1 − Zj | > 0

1/2 |Zj+1 − Zj | = 0

(25)

for j = 1, 2, · · · ,mq and noting that the sub-
script sequence (·)0 = (·)mq and (·)mq+1 = (·)1

in applying (25).

Furthermore, the second-fold integration on
the panel hp of polygon with mp nodes denoted
by P`(ξ`, η`, ζ`), as shown on the right part of
Figure 6, has also been analysed in [19] with the
same technique. This P2P (panel to panel) inte-
gration is written by

Cpq =

∫∫
hp

Cq(P ) dS(P )

=

∫∫
hp

[ ∫∫
hq

K(P,Q) dS(Q)
]

dS(P )

=
1

k4

mp∑
`=1

mq∑
j=1

{[
cqjc

p
`+(cqjd

p
`+cp`d

q
j)k+dqjd

p
`k

2
]
K(Zj`)

+ k
[
cqjc

p
` + (cqjd

p
` + cp`d

q
j)k + dqjd

p
`k

2
]
R1(Zj`)

+ k2
[
cqjc

p
` + (cqjd

p
` + cp`d

q
j)k
]
R2(Zj`)

+ dqjd
p
`k

3R3(Zj`)
}

(26)

with the additional notations

R1(Zj`) = Zj`
[

ln(−Zj`)− 1
]

R2(Zj`) = Z2
j`

[
2 ln(−Zj`)− 3

]
/4

R3(Zj`) = Z3
j`

[
6 ln(−Zj`)− 11

]
/36

Zj` = Zj + Z`

(27)

and coefficients (cp` , d
p
` ) are formulated in the

same way as (cqj , d
q
j) in (25) and involve the co-

ordinates P`(ξ`, η`, ζ`), the normal vector np =
(np1, n

p
2, n

p
3), and Z` in place ofQj(xj , yj , zj), nq =

(nq1, n
q
2, n

q
3), and Zj , respectively.

From (25) and (27), the coefficients (Zj , c
q
j , d

q
j)

and (Z`, c
p
` , d

p
` ) depend only on the geometry of

panel hq and hp, respectively. The functions
K(ZPj ) and K(Zj`) has finite values for ZPj → 0
and Zj` → 0, respectively. The same for auxil-
iary functions R1,2,3(Z) when Z → 0. For large
values of Z, alternative formulae are developed
for Cq(P ) and Cpq well suit for their numeri-
cal evaluation. Concerning the logarithmic func-
tion appearing in K(Z) and R1,2,3(Z), theoreti-
cally, both ln(Z) and ln(−Z) are correct in the
formulation. The logarithmic function ln(−Z)
with negative sign is chosen in order to avoid
the difficulty relative to the branch cut if ln(Z)
is adopted, due to the fact that <e{Z} ≤ 0− in
all applications here.

Finally, the integrations of Green’s function
defined by (21) are then

F 2
r

∫∫
hq

GF (P,Q) dS(Q)

=
1

π

∫ π

−π

[
A1C

q
1(θ)+A2C

q
2(θ)+A3C

q
3(θ)

]
dθ

F 2
r

∫∫
hp

[ ∫∫
hq

GF (P,Q) dS(Q)
]

dS(P )

=
1

π

∫ π

−π

[
A1C

pq
1 (θ)+A2C

pq
2 (θ)+A3C

pq
3 (θ)

]
dθ

(28)
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reduced to single θ-integrals which can be eval-
uated numerically. The formulations to perform
the analytical integration of ∇G(P,Q) over pan-
els are also developed in [19].

The coefficients dqj (and its pair dp` ) defined

in (25) is nil except at two critical θ-values at
which the wavenumber vector is orthogonal to
the direction in parallel to the segment Qj-to-
Qj+1 of panel hq when both Qj and Qj+1 are
located at the same level (zj = zj+1). However,
ignoring dqj (or dp` ) can lead to significant numer-
ical errors. Furthermore, the accuracy require-
ment for K(Z) is more exigent in the numerical
computation of P2P than P2C when θ is close
to the critical values.

4. INTEGRAL EQUATIONS

There are three classical Green’s theorems de-
rived from the divergence theorem to make equal-
ity of the volume integral and the surface inte-
grals over all boundaries, and the application to
two harmonic functions. Especially, the third
Green’s theorem leads to the integral represen-
tation

C∗ϕ(P )=−
∫
−
∫

H∪F∪Σ

[
ϕn(Q)G(P,Q)−ϕ(Q)Gn(P,Q)

]
dS

(29)
resultant from the volume integral for the left
hand side, and surface integrals over all H∪F∪Σ
including the ship hull H, the free surface F and
a fictitious surface at infinity Σ on the right hand
side. Besides the integral at infinity Σ which can
be shown to disappear, different BIEs can be
obtained following the boundary conditions, in
particular, that on the free surface, and the con-
sideration to preserve the well-conditioned sys-
tem. The multiplicative constant C = 1 for any
field point P in the domain, C = 1/2 for P on
H and C = 0 for P outside of the domain. For
a field point P ∈ F on the free surface, more
special analyses are needed. Indeed, a variant
of Green’s theorem (fourth one) is formulated
in [19], by extending the analysis in [22] for the
zero-speed case, and applied to obtain the con-
stant C = 1 on the left hand side of integral
representation (29) for a point P ∈ F on the
free surface.

4.1. Classical BIE on the ship hull

The boundary condition (6) on the free surface F
in the classical Neumann-Kelvin method is based
on the uniform stream. The F -integral on the
right hand side of (29) can be reduced to an

integral along the waterline

IF =

∫∫
F

(
− ϕzG+ ϕGz

)
dS

=

∮
Γ

[
2iτϕG+ F 2

r (ϕxG− ϕGx)
]

dy

(30)

by applying the Stokes’ theorem, so that the
classical BIE for P ∈ H is written as

1

2
ϕ(P ) +−

∫
−
∫
H
ϕGn dS

+

∮
Γ

[
F 2

r (ϕGx−ctϕtG−csϕsG)−2iτϕG
]

dy

=

∫∫
H
ϕnGdS + F 2

r

∮
Γ
cnϕnGdy

(31)

in which we have introduced the identity ϕx =
ctϕt + csϕs + cnϕn with coefficients (ct, cs, cn)
depending on the hull geometry and (ϕt, ϕs, ϕn)
the two tangent derivatives and normal deriva-
tive along Γ.

4.2. New BIE on H, F and W

The boundary condition (5) on the free surface
F based on the ship-shaped stream is now con-
sidered. Unlike the Neumann-Kelvin case, the
analysis in [19] gives the F -integral

IF =

∫∫
F

[
∇̄·(Fww)+F0ϕ+F1ϕx+F2ϕy

]
dS

=−
∮

Γ
Fw(w · n̄) dl+

∫∫
F
(F0ϕ+F1ϕx+F2ϕy) dS

(32)
with

Fw = −2iτϕG+ F 2
r

[
(w · ∇ϕ)G− (w · ∇G)ϕ

]
F0 =2iτ(φ̄xGx + φ̄yGy)− iτ φ̄zzG

+F 2
r [(φ̄x−1)(2φ̄xx+φ̄yy)+φ̄yφ̄xy]Gx

+F 2
r [(φ̄x−1)φ̄xy+φ̄y(φ̄xx+2φ̄yy)]Gy

+F 2
r [(φ̄x−2)φ̄xGxx+2(φ̄x−1)φ̄yGxy+φ̄2

yGyy]

F1 = F 2
r [(φ̄x − 1)φ̄xx + φ̄yφ̄xy]G

F2 = F 2
r [(φ̄x − 1)φ̄xy + φ̄yφ̄yy]G

The waterline integral on the right hand side
of (32) is obtained by applying Gauss’ theorem
with notations ∇̄ = (∂x, ∂y) and n̄ = (nx, ny).
According to the boundary condition of ship-
shaped stream on H and φ̄z = 0 on F , the term
w · n̄ ≡ 0 along Γ. The waterline integral disap-
pears simply. The remaining integral on F is sig-
nificant only in the vicinity of H since the space
derivatives of ship-shaped flow ∇φ̄ and ∇(∇φ̄)
decay rapidly away from the ship. It worths
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noting that the first tentative to trait the same
free-surface integral (32) was presented in [25] in
which the terms with (F1, F2) are missing.

The new BIE on ship hull is then written as

1

2
∗ ϕ(P ) +−

∫
−
∫
H
ϕGn dS

−
∫∫
F
(F0ϕ+F1ϕx+F2ϕy) dS=

∫∫
H
ϕnGdS

(33)

for P ∈ H, which should be combined with one
BIE on the free surface since (ϕ,ϕx, ϕy) are un-
known on F . Similar to the new BIE on H, the
BIE for a field point P on the free surface is
obtained

1 ∗ ϕ(P ) +

∫∫
H
ϕGn dS

−−
∫
−
∫
F
(F0ϕ+F1ϕx+F2ϕy) dS=

∫∫
H
ϕnGdS

(34)

for P ∈ F . In addition, we apply the third
Green’s theorem (29) to a field point P located
inside the ship, i.e., outside of the fluid domain
limited by H ∪ F ∪ Σ. In particular, at some
points on the waterplane denoted by W , the in-
tegral equation is written as

0 ∗ ϕ(P ) +

∫∫
H
ϕGn dS

−
∫∫
F
(F0ϕ+F1ϕx+F2ϕy) dS=

∫∫
H
ϕnGdS

(35)

for P ∈W inside the ship hull.

As mentioned forgoing, there is, in addition,
an integral on F on the right hand side of (33)-
(35) associated with the forcing term due to in-
coming waves for diffraction problem, omitted
here for the sake of space. The linear system
combining BIE onH (33) and BIE on F (34) is of
square form, i.e., the same number of equations
as that of unknowns, since the tangent deriva-
tives of unknowns on F can be transformed to
unknowns ϕ by using shape functions in higher-
order patch method, or any scheme of finite-
difference type. In order to be sure that Green’s
theorem is well respected outside of the fluid do-
main - zero potential inside the ship. The ad-
ditional equation (35) is formulated for P ∈ W
on the waterplane W . The system is then over-
determined. The resolution of a linear system of
rectangular form can be well obtained using the
standard Lapack library.

5. WAVE LOADS AND MOTIONS

According to the boundary condition (7) on the
ship hull H, the time-harmonic potential ϕ can

be written as the sum ϕ = aϕD + ϕR of the
diffraction ϕD and radiation ϕR decomposed by

ϕR = −iω
6∑
j=1

ξjϕj + Fr

6∑
j=1

ξjϕj+6 (36)

in which the first 12 elementary potentials are
due to ship’s motions ξj for j = 1, 2, · · · , 6 in-
cluding the translations T = (ξ1, ξ2, ξ3) and ro-
tations R = (ξ4, ξ5, ξ6), called the radiation po-
tential and satisfy the boundary condition on H

∂

∂n
ϕj =

{
nj j = 1, 2, · · · , 6
mj−6 j = 7, 8, · · · , 12

(37)

respectively. The diffraction potential ϕD asso-
ciated with the wave amplitude a and the in-
coming waves ϕI given by (8) satisfies a non-
homogeneous condition on F , as already men-
tioned. The new BIE (33)-(35) are directly ap-
plied to all ϕj for j = 1, 2, · · · , 12 and ϕD for
which an integral on F with the integrand func-
tion associated with the known ϕI on the right
hand of new BIE (33)-(35).

5.1. Hydrodynamic pressures

Once we solve the new BIE and obtain ϕj for j =
1, 2, · · · , 12, the time-harmonic pressure scaled
with (ρgL) due to radiation can be obtained by
Bernoulli’s equation

PR = −
{
− iωϕR + Fr(w · ∇)ϕR

}
=

6∑
j=1

ξj

{
ω2ϕj+iτ

[
(w · ∇)ϕj+ϕj+6

]
− F 2

r (w · ∇)ϕj+6

} (38)

by introducing the radiation part in (36) and
considering the notation for the time derivative
of the time-harmonic potential ψt = −iωϕ. In
the same way, the dynamic pressure due to diffrac-
tion scaled with ρga is contributed by the sum
of the incoming and diffraction potentials

PD= iω(ϕI+ ϕD)− Fr(w · ∇)(ϕI+ ϕD) (39)

In addition, the hydrostatic pressure PH and
that PS due to steady base flow are written by

P = PH + F 2
r P

S with

PH = −z

PS = −1

2
(w ·w − 1)

= −1

2

[
(φ̄x − 2)φ̄x + φ̄yφ̄y + φ̄zφ̄z

]
(40)
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which yield the usual hydrostatic stiffness due
to the variation of PH associated with the ship
motion and the speed-effect restoring force due
to the variation of PS associated with the same
ship motion. The second one is often ignored in
the literature.

5.2. Radiation forces

The radiation forces are defined as the reaction
of fluid via pressure on the ship hull against the
displacement, velocity and acceleration of the
ship, under the chosen reference system associ-
ated with the mean position of the ship. They
are often written with a negative sign by

−FRi = −
∫∫
H
PRNi dS

−
∫∫
H

[
(X · ∇)P + PR ∧

]
Ni dS

=
6∑
j=1

ξj
[
− ω2Aij − iωBij + Cij

] (41)

for i = 1, 2, · · · , 6, in which Aij , Bij and Cij are
called added-mass, damping and stiffness coef-
ficients, respectively, following their respective
association with the acceleration, velocity and
movement of the ship. The generalized normal
vector N = (n, r ∧n)T = {Ni} is a column of 6
elements. Among all terms in (41), the simplest
ones are associated with the hydrostatic pressure

−
∫∫
H

[
(X · ∇)PH + PHR ∧

]
Ni dS =

6∑
j=1

ξjHij

(42)
with the displacement vector

X = T + R ∧ r

r = (x− x0, y − y0, z − z0)
(43)

associated with the translation/rotation (T ,R)
and the position vector r with respect to the ref-
erence point r0 = (x0, y0, z0). The hydrostatic
stiffness matrix Hij defined by (42) should be
augmented by including the variation of gravity
forces due to ship displacement, explained in all
textbooks.

In the same way, the speed-effect stiffness
coefficients are given by

−
∫∫
H

[
(X · ∇)PS + PSR ∧

]
Ni dS =

6∑
j=1

ξjSij

(44)
Concerning the radiation forces due to the time-
harmonic pressure PR defined by (38), we may

decompose them into three components

−
∫∫
H
PRNi dS=

6∑
j=1

ξj

[
−ω2Rωij−iτRτij+F

2
r R

Fr
ij

]
(45)

with

Rωij =

∫∫
H
ϕjNi dS

Rτij =

∫∫
H

[
(w · ∇)ϕj + ϕj+6

]
Ni dS

RFr
ij =

∫∫
H

(w · ∇)ϕj+6Ni dS

(46)

By introducing (42), (44) and (45) back to (41)
and following the usual notations, we have

Aij =<e
{
Rωij+i(τ/ω)Rτij−(F 2

r /ω
2)
[
RFr
ij +Sij

]}
Bij ==m

{
ωRωij+iτRτij−(F 2

r /ω)RFr
ij

}
Cij =Hij

(47)

in which the speed-effect stiffness Sij (pure real)
contributing to the added-mass coefficients, is
fully ignored in all previous studies. A more con-
sistent decomposition by regrouping terms asso-
ciated with RFr

ij at the limit of zero frequency

and Sij in Cij is suggested in [19].

5.3. Wave exciting forces and motions

The diffraction wave loads are often called the
wave exciting loads and defined by the integra-
tion of time-harmonic diffraction pressure

FDi = −
∫∫
H
PDNi dS

= −
∫∫
H

{
iω(ϕI + ϕD)

− Fr(w · ∇)(ϕI + ϕD)
}
Ni dS

(48)

which is proportional to the wave amplitude a.
The motion equation based on the Newton’s sec-
ond law is expressed by

6∑
j=1

ξj

{
−ω2(mij+Aij)−iωBij+Cij

}
=FDi (49)

for i = 1, 2, · · · , 6 and with mij the inertial ma-
trix, and (Aij , Bij , Cij) defined in (47).

6. NUMERICAL IMPLEMENTATION

The numerical method implemented in [18] was
associated with the boundary condition (6) on
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F of Neumann-Kelvin type and the boundary
condition (7) on H including the ship-shaped
stream. The ship hull is represented by a num-
ber of bi-quadratic curved patches of 9 nodes.
Not only a precise description of ship geometry
is achieved, but also a continuous representa-
tion of the velocity potential over the hull can
be obtained so that the tangent derivatives can
be computed by making differentiation to the
shape functions as described in [18].

The new BIE (33)-(35) associated with the
boundary condition on F and based on the ship-
shaped stream gives the velocity potential ϕ(P )
on H and F . Its derivatives are necessary for
computing wave loads and induced motions. The
bi-quadratic patch method developed in [18] is
then preferred. In order to take advantages of
analytical integrations of Green’s function on pan-
els represented by formulae (22) and (26), the
subdivision of curved patch into flat panels is
performed as a pre-build-in treatment. The new
BIE is then written at centroids of flat panels.
The domain collocation of Galerkin type is then
adopted by an integration of both sides of BIE
over the field panel. P2P formulations (26) play
then a critical role here for obtaining accurate
influence coefficients to fill the matrix of linear
system. Once the BIE is solved, the solution
(velocity potential) on flat panels inside of one
patch is then mapped to that at patch’s nodes.
The potential and its derivatives can then be
re-computed at any point on the curved patch
by using shape functions and potential values at
patch’s nodes.

6.1. Bi-quadratic patch and flat panels

The bi-quadratic patch described in [18] is sub-
divided into 9 (3×3) quadrilateral flat panels as
shown on the left of Figure 7. The pane’s cen-
troid and its 4 corner nodes are located on the
curved patch with some tolerance of warpness.
Subdivision of a quadratic patch with 7 nodes
into 6 triangular flat panels or 6 quadrilateral
plus one hexagonal panels can also be made in
similar ways.

An example of mesh containing geometrical
information of both bi-quadratic patches and flat
panels is illustrated in the middle picture of the
same Figure 7. The hullform is that of Wigley IV
presented in [23]. Red lines represent the border
contour of curved patches and black lines indi-
cate the border sides of quadrilateral flat pan-
els. On the waterplane W inside the hull H,

the quadrilateral flat panels are automatically
generated according to the geometrical data of
curves patches which touch the waterline, with a
requirement of panel size to be comparable with
that of panels on H. The grid on W is a bit ar-
bitrary and no need to fill the whole waterplane.

On the right part of Figure 7, the grid on the
free surface F is illustrated. Again, patch’s bor-
der contours are shown by red lines and panel’s
borders by black lines. The flat patch (and flat
panels) in the vicinity of hull must be finer due to
the fact that the ship-shaped flow varies rapidly
near the waterline. The layers of patches on F
are of ellipse form to be better married to the wa-
terline. By using elliptic coordinate parameters,
the border contours of patches cross each other
at the orthogonal angle, except those touching
the waterline in the nearest layer of patches.

6.2. Integrals on the free surface

The numerical method based on Neumann-Kelvin
boundary condition (6) on F developed in [18]
has been validated with analytical results at zero
speed for a floating hemisphere, semi-analytical
solutions of NK steady flow around an ellipsoid
and semi-analytical results for a submerged sphere
advancing in waves. The comparison with ex-
perimental measurements performed in [23] has
been fairly good for the Wigley hullform III which
is a very slender body with length/width ratio
= 10 (typical commercial ship has a ratio about
6 to 8). Nevertheless, the comparison for the
Wigley hullform IV (with the length/width ratio
= 5) was fairly bad, in particular, hydrodynamic
coefficients (added-mass and damping) in pitch
are very sensitive to the parameters like filter
constant designed to remove highly oscillations
in Green’s function computation and number of
Gauss points for integration of Green’s function
over patches.

Now we have new set of boundary integral
equations not only on the ship hull H (33), but
also over a zone on F (34) in the vicinity of
ship, and additional zero-potential requirement
imposing on the waterplane W (35) inside the
hull. To examine the effect of integral on F , we
have simplified it by taking the dominant terms∫∫

F
(F0ϕ+ F1ϕx + F2ϕy) dS

≈
∫∫
F

[
φ̄x(Gz−ω2G) + 2iτ φ̄yGy − iτ φ̄zzG

]
ϕdS

(50)
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Figure 7. Subdivision of quadratic patch into flat panels (left), the mesh composed of patches and panels on
H and W (middle) and the mesh on F (right).

and all terms of O(F 2
r ) are ignored in the present

computations. The variations of (φ̄x, φ̄y, φ̄zz) in-
volved in the forcing terms of above integral are
depicted on the left, in the middle and on the
right of Figure 8, respectively. They are signif-
icant at bow and stern as expected and decay
very rapidly with distance from bow or stern,
in consistence with the theoretical order: ∇φ̄ ≈
O(R−3) and ∇(∇φ̄) ≈ O(R−4) with R the dis-
tance from ship center, for large R. The zone
presented in Figure 8 around the Wigley hull-
form IV, has a total distance of 2L (two times
the ship length)) extending along the ship cen-
terline.

6.3. Radiation coefficients

The same Wigley hullform IV, described in [23],
with length L=3m, width B=0.6m and draft D
= 0.1875m is considered. The hull surface is dis-
cretized with 72 bi-quadratic patches illustrated
in the middle of Figure 7. The hull patches are
then subdivided into 648 (9 × 72) flat panels.
There are 148 flat panels placed on the water-
plane W inside the hull. The free surface F in
a zone of diameter about 4L around the ship
is meshed with 96 patches (864 panels) as well.
Numerical results and comparison with exper-
imental measurements in [23] are presented on
the four lines of Figures 9, respectively, for hy-
drodynamic coefficients in heave, pitch, heave-
pitch and pitch-heave coupling oscillations. The
added-mass coefficients and damping coefficients
are illustrated on the left and right pictures, re-
spectively. The case with Froude number Fr =
U/
√
gL = 0.3 is taken for all results here. The

abscissa in all pictures in Figures 9 are reduced
encounter frequency ω

√
L/g. The added-mass

coefficients A33, A55 and A35(A53) are non-di-

mensionalized respectively by (ρV ), (ρV L2) and
(ρV L) with the displacement V = 0.156m3. The
damping coefficients B33, B55 and B35(B53) are

divided respectively by (ρV
√
g/L), (ρV L2

√
g/L)

and (ρV L
√
g/L). The results of model tests pro-

vided in [23] are represented by squares and filled
triangles for two series of measurements.

In all pictures, there are three series of nu-
merical results including those based on the so-
called ”encounter-frequency” approximation im-
plemented in HydroStar (Original version of zero
speed) with legend (HydroStar-O) and by dashed
lines, those by using classical boundary integral
equations (Classical NK) of Neumann-Kelvin type
(31) developed in [18] depicted by blue lines,
and the results obtained by the present method
represented by ”HydroStar-V” and depicted by
red lines. The encounter approximation (dashed
lines) yields correct results at very high frequen-
cies but totally wrong in the zone of low frequen-
cies. The Classical NK (blue lines) gives fairly
good results for added-mass in heave (A33), still
correct for damping in heave (B33) with some
more deviations at larger frequencies. Concern-
ing hydrodynamic coefficients in pitch, the dif-
ferences between numerical results and bench-
mark measurements are increased for added-mass
(A55) and largely enhanced for damping (B55).
As mentioned, the waterline integrals involved
in the Classical NK are very sensitive to the pa-
rameters introduced in the numerical implemen-
tation. The results presented here are one of
best series, i.e., other results could present even
more important oscillations. If we consider the
middle of oscillations, the results could be more
or less consistent with the benchmark results for
added-mass coefficients, but not for damping co-
efficients. In particular, the damping coefficients
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Figure 8. Forcing terms on F due to ship-shaped stream: φ̄x (left), φ̄y (middle) and φ̄zz (right)

B55 obtained by the Classical NK oscillate with
amplified magnitude. The middle of oscillations
deviates largely from benchmark ”level”. On the
last two lines of Figures 9, the heave-pitch cou-
pling coefficients (A35, B35) and (A53, B53) are
depicted. Again, oscillations in both added-mass
and damping coefficients are remarkable.

The results by the New BIE (HydroStar-
V) represented by (33)-(35) are depicted by the
red lines marked with circles for added-mass and
damping coefficients. The curves of results are
smooth and free of ”irregular” oscillations present
in those by the Classical NK. Furthermore, the
results of HydroStar-V are in very good agree-
ment with benchmark measurements. In partic-
ular, the added-mass coefficients (A33, A55) ob-
tained by using (47) including the speed-effect
stiffness, are in excellent agreement with the mea-
surements. Some slight difference for other quan-
tities could be explained by ”normal” numerical
errors. Concerning the heave-pitch coupling co-
efficients, added-mass coefficients by HydroStar-
V are in very good agreement with experimental
measurements. The results of damping coeffi-
cients are smooth and follow well the benchmark
results, unlike those by Classical NK presenting
oscillations. It worth noting that there is not any
parameters implemented in the method except
the value of viscosity to be given. Although the
value of ε = 0.0001 is advocated, using smaller
values does not affect the final results, but in-
creases intermediate computations.

6.4. Diffraction loads and induced motions

The diffraction loads defined by (48) are com-
puted and illustrated on Figure 10. The am-
plitudes of the forces in heave F3 are scaled by
(H33a) using the hydrostatic stiffness H33 and
wave amplitude a following that in [23], and de-
picted on the left of Figure 10. The amplitudes
of the moments in pitch F5 are scaled by (H55k0a)
using the hydrostatic stiffnessH55 and wave steep-

ness (k0a) of incoming waves, and depicted on
the right of Figure 10. Globally, all three series
of results are quite similar and close to the mea-
surements. The classical NK method provides
fairly good results. The results obtained by us-
ing the new BIE (HydroStar-V) are much bet-
ter than those of classical NK and in very good
agreement with the measurements of model tests
given in [23], in particular, in the zone of re-

duced encounter frequencies ω
√
L/g ∈ (2.5, 5.0)

for both in heave and pitch.

Finally, the motion RAOs of heave and pitch
are shown on Figure 11. The heave RAO il-
lustrated on the left is scaled with the incom-
ing wave amplitude a. The pitch depicted on
the right is scaled with the wave steepness (k0a)
of incoming waves. At low wave frequencies,
both RAOs tend to unity in accordance with
physical observations. For the heave RAO, all
three methods predict well the resonance fre-
quency (ω3

√
L/g ≈ 3.5) at which the response

is maximum. However, both the ”encounter fre-
quency” approximation (HydroStar-O) and the
classical NK method predict larger resonant mo-
tions in heave. The results by the ”encounter
frequency” approximation exaggerate much the
response in large range of frequencies on both
sides of the resonance. The results by the new
BIE (HydroStar-V) are in very good agreement
with the measurements in [23], in the full range
of frequencies.

Concerning the pitch RAO, both the ”en-
counter frequency” approximation and the clas-
sical NK method provide the results deviated
from the measurements of model tests in [23].
The peak position is confusing and lower than
the benchmark. Even two peaks are visible in
the results by the classical NK method due to
the ”irregular” oscillations of added mass (and
damping) coefficients shown on Figure 9. On the
other side, the results obtained by the new BIE
(HydroStar-V) are in excellent agreement with
the measurements given in [23].
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Figure 9. Added-mass coefficients (left) and damping coefficient (right) in heave (first line), pitch (second
line), heave-pitch (third) and pitch-heave (fourth line) coupling oscillations

7. DISCUSSION ANDCONCLUSION

We have presented our most recent results of re-
search work on the free-surface Green’s function

method (GFM) applying to the ship seakeeping
with forward speed. Most of them are unpub-
lished and only a summary presented very re-
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Figure 10. Diffraction wave loads in heave (left) and in pitch (right)
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Figure 11. Heave RAO (left) and Pith RAO (right)

cently in [26]. Indeed, facing the complexity of
the subject, we have raised the challenge by lay-
ing down the critical cornerstones.

On top of all, we have re-analysed the bound-
ary value problem by choosing the ship-shaped
stream as the base flow. This consideration is
not only for physical acceptance but also neces-
sary by a rigorous analysis based on the pertur-
bation theory. The new and consistent boundary
condition on the free surface is obtained with lin-
earisation over the base flow. Unlike the usual
boundary condition (6) of Neumann-Kelvin type
based on the uniform flow (physically unaccept-
able), the formulation (5) looks more complex
due to the interaction terms associated with the
base flow.

We find the benefit of this complex bound-
ary condition in the formulation of boundary
integration equations. Green’s theorem is ap-
plied to Green’s function and velocity potential
of unsteady flow by performing the vector inte-
gral analysis of their respective differential equa-
tions. The part of free-surface integrand corre-
sponding to the terms associated with the uni-
form flow is modified such that the equivalent

waterline integral is proportional to the normal
derivative of the base flow. This waterline inte-
gral is then simply nil by the boundary condition
of base flow on ship hull. Free of waterline in-
tegral, it remains still integration of some free
surface terms. This remaining integral over the
free surface is localized in a limited zone as the
integrand function depending on the ship-shaped
stream is significant only in the vicinity of hull.

Green’s function associated with a pulsat-
ing and translating source represents the fun-
damental solution to ship-motion problems with
forward speed. Many studies have been car-
ried out to analyse its behaviours and to develop
numerical schemes for its computations. The
most striking property is the peculiar singularity
and fast oscillations for field points approaching
to the track of source point at or close to the
free surface, as revealed in [15]. This behaviour
makes the waterline integral included in the Old
BIE (Classical NK) nightmarish. The same is-
sue should be encountered in the computation
of the free-surface integral involved in the New
BIE.

Not satisfied with using treatments by lower-
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ing the waterline or by parametrising numerical
filters to mask the difficulty, we have examined
its origin by introducing the neglected physical
parameters like surface tension, fluid viscosity
or combination of both. We have chosen here
the introduction of viscosity. Unlike the classi-
cal way introducing fictitious viscosity (Rayleigh
viscosity or Lighthill’s argument) which was just
a mathematical device to make waves propagat-
ing radially outwards, the analysis based on lin-
earised Navier-Stokes equation and Helmholtz
decomposition in [16] yields the consistent kine-
matic and dynamic boundary conditions on the
free surface with viscosity.

Green’s function with viscosity is then ado-
pted. Unlike the inviscid Green’s function, there
are three complex wavenumbers. First two re-
semble those of inviscid Green’s function for small
and moderate values, but significantly different
for θ close to π/2. They can be large but not un-
bounded and have an important imaginary part
which damps all highly oscillatory waves. The
third one having a negative real part does not
generate any waves and contribute to the local
field. Being implicit and complex, the integrand
function of viscous Green’s function is free of
singularities and numerical computations are fa-
cilitated.

As the matrix elements of linear system, the
influence coefficients are the integration of Green’s
function and its derivatives on ship hull H and
on free surface F . To guarantee the accuracy,
analytical integrations of the wavenumber inte-
gral function and its derivatives over flat panels
of polygonal form are formulated for all config-
urations including panels of hull-to-hull, hull-to-
freesurface and freesurface-to-freesurface. The
usual algorithm using Gauss points gives good
accuracy for integration on hull panels. It is,
however, nearly impossible, or to have to use ex-
cessive number of Gauss points up to (256×256)
to obtain a correct accuracy for panels on the
free-surface.

To take advantages associated with the ac-
curacy in the analytical integrations of Green’s
function over flat panels, we adopt the concept to
use flat panels inside a bi-quadratic curved patch
represented by using shape functions. The veloc-
ity potential obtained by New BIE (HydroStar-
V) on flat panels can be accurately extended
to its tangent derivatives necessary for pressure
computations, by the derivatives of the shape
functions.

The last but not the least. To be sure that

Green’s theorem is well respected outside the
fluid domain, the zero potential on the water-
plane inside the ship hull is imposed in addi-
tional to BIEs on the hull and on the free surface.
This over-determined linear system method, de-
scribed in [24], has been successful to remove
the effect of ”irregular frequencies”, in our in-
house software HydroStar-O for the solution of
seakeeping at zero speed. Application of this
approach guarantees the well-condition of lin-
ear system. Indeed, there is an issue of ”ir-
regular wavenumebrs” associated with BIEs in
the forward-speed problem. Similar to the zero-
speed case which is a special case of forward-
speed problems, the effect of ”irregular wavenum-
bers” appears for every encounter frequency, re-
markable in Figures 9 by the exaggerated oscilla-
tions of hydrodynamic basic solutions, in partic-
ular, the damping coefficients obtained by using
the Classical NK method.

In summary, the new method presented here
accumulates a series of critical groundwork on
both theoretical and numerical aspects. Based
on sound theoretical advances and rigorous nu-
merical developments, the results show convinc-
ing convergence and very good agreement with
benchmark results derived from the classical ex-
perimental measurements. We have achieved our
objective to have a reliable and practical tool
to predict the seakeeping of a ship advancing in
waves.
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Méthode de Fourier-Kochin-Lighthill pour
la diffraction-radiation par un navire ou
une structure offshore. Actes des 5èmes J.
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vitesse d’avance: Comparaison avec
l’approximation de fréquence de rencontre.
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